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Abstract

We consider some large systems of di�erential equations that have

been introduced as model many-body problems. These systems have

solutions that oscillate on a wide range of time scales. We apply the

formalism of optimal prediction to these systems, using conditional ex-

pectations of the equations of motion to construct e�ective equations

for the most slowly-varying quantities. We verify the accuracy of the

e�ective equations in examples, comparing solutions of the original

and new systems, and we show that the new equations give accurate

answers for slow variables with relatively little computational e�ort.

This work was supported in part by the Department of Energy's O�ce
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In a recent paper[1], Stuart and Warren considered a particular Hamilto-

nian dynamical system as a model of a particle interacting with a heat bath.

This dynamical system consisted of many particles connected by springs, and

by choosing the masses of the particles to vary over a wide range, these au-

thors caused sti�ness in Hamilton's equations of motion that mimicked the

sti�ness which limits more realistic molecular dynamics computations. They

then introduced a variety of numerical schemes for integrating the equa-

tions of motion, and asked what would happen if the schemes were grossly

underresolved in time. Stuart and Warren showed that schemes could be

found which yielded correct answers for slowly-varying degrees of freedom,

even when most of the dynamics was underresolved in time (i.e., even when

the time step was much larger than the periods of most normal modes of

oscillation).

This observation, that a scheme may be optimized to work well at poor

resolution, is similar to the claims of optimal prediction [3, 4]. Optimal pre-

diction is a formalism for reducing a large system of di�erential equations

into a smaller system of di�erential equations. The smaller system is designed

to yield expectations of solutions to the larger system and to be computa-

tionally practical when the larger system is not. Since Stuart and Warren
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have found schemes for large, sti� systems that work with big time steps, it

is natural to ask whether there are smaller systems of di�erential equations

(just describing the slower modes) that would work at these big time steps.

In this paper, we apply optimal prediction to the Stuart-Warren model.

We reduce their original, large system of di�erential equations to a much

smaller system, and show that the resolved integration of the smaller system

reproduces the bene�ts of their large-�t schemes. We then add more inter-

actions to the original mass-and-spring model, so that every mass interacts

with every other mass. The same optimal prediction formalism applies to

this more elaborate example, and de�nes a renormalization of spring con-

stants. We demonstrate the computational savings of the reduced equations

for this new model as well.

Our methods are not limited to the model problems. Our results are

potentially relevant for all mechanics problems involving oscillatory motion

and a wide range of time scales. For a review of problems and methods of

this type, including molecular dynamics, orbital mechanics, and electronic

oscillators, see [9].
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1 Formulas for conditional expectations

In this paper, we assume that some dynamical variables are of interest and

others are irrelevant and unknown. We take all the unknown quantities to be

random variables, and we assume we are given a prior probability distribution

to describe their statistics. Since we are considering Hamiltonian equations,

we take this prior distribution to be the canonical ensemble.

The canonical ensemble is de�ned by the probability density, P = e�H

where H is the Hamiltonian. If H is quadratic in canonical variables, as in

the examples presented here, then P is a Gaussian distribution.

Our general approach is to pick some particular variables to compute,

which we call \collective variables," and to treat the values of these variables

as conditions when we compute expectations of everything else. Since P will

be Gaussian, we will be interested in conditional expectations with respect to

Gaussian distributions. This section presents general formulas for computing

such expectations.

Let x1 : : : xN be Gaussian random variables distributed with density

P (x1; : : : ; xN) / exp

 
�
1

2

NX
i=1

NX
j=1

xiAijxj �
1

2

NX
i=1

bixi

!
: (1)

We denote expectations with respect to this density by h�i, and hxii =
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PN

j=1
A�1

ij bj. Now suppose that x1 : : : xn are given for all n < N . The

conditional expectations of xn+1 : : : xN conditioned by x1 : : : xn are denoted

hxiin, i = n+ 1; : : : ; N and are given explicitly by

hxiin = hxii+

nX
�=1

nX
�=1

A�1

i� M
�1

�� (x� � hx�i); i = n+ 1; : : : ; N (2)

where M�� = A�1

�� for �; � = 1; : : : ; n and M�1 is the inverse of the n � n

(not N �N) matrix (see [3, 4] for details).

In this paper, all matrices Aij will be of the form,

Aij = a�ij + b (3)

for some real numbers a 6= 0 and b 6= �a=N . These matrices are always

invertible (they form a group) and the formula for the inverse is

A�1

ij =
1

a
�ij �

b=a

a+Nb
: (4)

If these xi variables are functions of time, and if they obey a system of

N �rst-order di�erential equations

_xi = fi(x1; : : : ; xN); i = 1; : : : ; N (5)

then the �rst approximation of optimal prediction states that if x1 : : : xn are

known at an initial time and xn+1 : : : xN are not, then

_x� = hf�(x1; : : : ; xN)in; � = 1; : : : ; n (6)

5



is an accurate system of n < N di�erential equations for the x1 : : : xn on

average, at least for short times. Note that the right-hand sides of (6)

are functions of x1 : : : xn through conditions on the expectation, and not

of xn+1 : : : xN .

2 The original model

Stuart and Warren [1] (see also [2] and [8]) considered a one-dimensional

collection of particles connected by springs. There was one distinguished

particle, with mass 1, coordinate Q and momentum P . The distinguished

particle was connected, by springs of spring constant k, to N other particles

with masses k=j2, coordinates qj and momenta pj , j = 1 : : : N representing

a heat bath (see Ford and Kac [6]).

The motion of this collection of particles and springs is de�ned by the

Hamiltonian

H(Q;P ; q1; : : : ; qN ; p1; : : : ; pN )

=
1

2
(Q2 + P 2) +

NX
j=1

�
p2j

2mj

+
1

2
k(Q� qj)

2

�
(7)

where (Q;P ) and (qj; pj) are canonically conjugate dynamical variables for
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j = 1; : : : ; N and mj = k=j2. The associated equations of motion are

_Q = P

_P = �Q+ k

NX
j=1

(qj �Q)

_qj = pj=mj; j = 1; : : : ; N

_pj = k(Q� qj); j = 1; : : : ; N

(8)

If Q were �xed, then each qj would oscillate harmonically with frequency

!j = j. A discretization of the 2N + 2 equations (8) would therefore be

resolved in time if �t � 2�

!N
= 2�

N
. If this condition on �t were violated,

then the result of the computation would depend on how the equations were

discretized. The intriguing result of [1] is that some schemes will give the

right evolution for Q and P when �t & 2�

N
and others will not. For instance,

if the scheme is

Qn+1
�Qn

�t
= P n+1

P n+1
� P n

�t
= �Qn + k

NX
j=1

(qn+�j �Qn)

qn+1j � qnj

�t
= pn+1j =mj

pn+1j � pnj

�t
= k(Qn

� qnj )

(9)

then � = 0 (a symplectic method) gives the right answer for Q and P , but

� = 1 (another convergent method) does not.

Figure 1 shows a fully-resolved calculation (�t = 10�2=N) of P (t) starting
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from P (0) = 0, Q(0) = 1:5, with qj(0) and pj(0) chosen randomly from the

canonical ensemble, i.e., chosen with probability density e�H . This �gure

also shows a calculation made from the same initial condition, but using the

symplectic scheme (equation (9) with � = 0) and �t = 1=N , a time step one

hundred times larger. This �t is too large to resolve most normal modes, but

the two calculations overlap; they are indistinguishable. Clearly, the fastest

oscillations in the model (8) do not need to be resolved in order to get P (t)

right.

3 Optimal prediction of the original model

If we choose our collective variables to be Q, P , q1; : : : ; qn and p1; : : : ; pn for

some 0 � n � N , then the optimal prediction equations of the model (8) have

the same form as the original equations. Taking the conditional expectations

of the right-hand sides of (8) and evaluating the expectations using (2), we

�nd that

_Q = P

_P = �Q+ k

nX
�=1

(q� �Q)

_q� = p�=m�; � = 1; : : : ; n

_p� = k(Q� q�); � = 1; : : : ; n

(10)
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on average. It comes as no surprise, therefore, that the motion of Q can

be computed with large �t: pick the �t desired, �nd an n � N such that

�t� 2�

n
, and perform a resolved integration of (10) with this n and �t. A

reasonable approximation for P (t) is guaranteed at least for short times.

Figure 2 duplicates the fully-resolved solution from Figure 1, and also

shows the solution to the same problem as computed by a resolved inte-

gration of (10), instead of an underresolved implementation of (9). Both

calculations used the same large �t = 10�2=n = 1=N . The underresolved

calculation duplicates the exact solution in high-frequency detail, but the op-

timal prediction involves less computation since it is n-dimensional instead

of N -dimensional. The optimal prediction has the additional advantage that

it did not use the initial data qn+1(0) : : : qN(0), pn+1(0) : : : pN (0) and may

claim to be an average answer over all possible values of these data.

4 A new model

Realistic molecular dynamics involves more complex interactions than are

present in the model (8). In particular, in reality every particle would interact

with every other, and the interactions would be nonlinear.

Nonlinear interactions require perturbative treatment in optimal predic-
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tion. There has been recent progress on this problem (see [5]), but nonlocal

interaction is simple to analyze. We therefore consider the generalization of

the model (8) where every q1 : : : qN is coupled to every other q1 : : : qN by a

spring:

H(Q;P ; q1; : : : ; qN ; p1; : : : ; pN )

=
1

2
(Q2 + P 2) +

NX
j=1

�
p2j

2mj

+
1

2
kQ(Q� qj)

2

�

+
1

2
kq

NX
j=1

NX
l=j+1

(qj � ql)
2 (11)

_Q = P

_P = �Q+ kQ

NX
j=1

(qj �Q)

_qj = pj=mj; j = 1; : : : ; N

_pj = kQ(Q� qj) + kq

NX
l=1

(ql � qj); j = 1; : : : ; N:

(12)

We have introduced two new spring constants in this formula: kQ, for the

couplings between the distinguished particle and all the others; and kq, for

all the couplings among the others.

5 Optimal prediction of the new model

We derive the optimal prediction equations of the system (12) for Q, P ,

q1 : : : qn, p1 : : : pn by averaging over qn+1 : : : qN , pn+1 : : : pN . When Q and P
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are constrained, the canonical probability density e�H remains Gaussian, and

it factorizes in the q's and p's:

PQP (q1; : : : ; qN ; p1; : : : ; pN )

/ exp

 
�

NX
j=1

p2j

mj

!
exp

 
�
1

2

NX
j=1

NX
l=1

(qj �Q)Ajk(qk �Q)

!
(13)

where

Ajk = (kQ +Nkq)�jk � kq: (14)

If, for some n < N , q1 : : : qn and p1 : : : pn are also constrained, then the

conditional expectations of qn+1 : : : qN and pn+1 : : : pN are given according

to (2) by

hpjin = hpj i = 0 (15)

hqjin = hqji+

nX
�=1

nX
�=1

A�1

j�M
�1

�� (q� � hq�i) (16)

where M�� = A�1

�� , �; � = 1; : : : ; n are the components of the n � n matrix

M .

Taking conditional expectations of the equations of motion (12), these
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elementary expectations imply that

h _Qin = P

h _P in = �Q+ k0Q

nX
�=1

(q� �Q)

h _q�in = p�=m�; � = 1; : : : ; n

h _p�in = k0Q(Q� q�) + k0q

nX
�=1

(q� � q�); � = 1; : : : ; n

(17)

where

k0q = Ckq; k0Q = Ckq; (18)

and

C = 1 + (N � n)
kq

kQ + nkq
: (19)

The �rst approximation of optimal prediction (6) yields the system

_Q = P

_P = �Q+ k0Q

nX
�=1

(q� �Q)

_q� = p�=m�; � = 1; : : : ; n

_p� = k0Q(Q� q�) + k0q

nX
�=1

(q� � q�); � = 1; : : : ; n

(20)

which is interpreted as an approximate evolution rule for averages of Q, P ,

q1 : : : qn and p1 : : : pn.

The only di�erence between the reduced equations (20) and the original

equations (12) is in the coupling constants, kQ and kq. This is unexpected.
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The reduced equations can be derived by ignoring the lighter particles and

just rescaling the spring constants. It amounts to a dynamical analogue of

renormalization in physics [7].

We performed a more rigorous test of the new model, comparing it to

an actual mean evolution. The results are shown in Figure 3. We once

again picked initial data Q(0) = 1:5, P (0) = 0, and chose q1 : : : qn, p1 : : : pn

(n = 10) from the canonical distribution for N particles (N = 1000 at kQ =

kq = 1. We then generated an ensemble of 100 sets of values for qn+1 : : : qN ,

pn+1 : : : pN , and for each set integrated the equations (12). Averaging over

all 100 solutions yielded the �rst curve for P (t). We then discarded the

ensemble and used the original q1 : : : qn, p1 : : : pn as initial conditions for the

reduced system (20), which we integrated with �t = 10�2=n = 1=N . This

�t is small enough to resolve the reduced dynamics but much too large to

resolve the original dynamics. The solution for P (t) from (20) is the second

curve. Finally, for comparison we performed the naive experiment of simply

truncating the big system (12) to n degrees of freedom, e�ectively ignoring

the lighter particles without rescaling kQ and kq by the factor C, which in

this case is 9:1818::: This produced the third curve.

The �gure shows that the reduced system accurately predicts the average
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evolution of P (t), and it does so at a computational savings of 99 percent of

the degrees of freedom and a factor of roughly 100 in time step.

6 Conclusions

We have shown how some large systems of di�erential equations with many

time scales may be systematically reduced to smaller systems with weaker

time step conditions by the probabilistic technique of optimal prediction.

The similarities between our examples and practical models of molecular

dynamics suggest that our methods might be useful for more realistic systems

of equations.
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Figure 1: The evolution of P (t) determined in two ways: by solving the equa-

tions of motion (8) with �t = 10�2=N (exact solution); and by applying the

symplectic scheme (9) with �t = 1=N (underresolved symplectic method).

For these calculations, N = 104 and kQ = kq = 1. The two solutions overlap

on the scale of this plot.
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Figure 2: The evolution of P(t) determined in two ways: by solving the

equations of motion (8) forN = 104 with �t = 10�2=N (exact evolution); and

by solving the reduced equations (20) with n = 102 and �t = 1=N = 10�2=n

(optimal prediction). For these calculations, kQ = kq = 1.
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Figure 3: The average evolution of P(t) determined in three ways: by solving

the equations of motion (12) for 100 di�erent initial conditions, withN = 103,

�t = 10�2=N , and then averaging all 100 solutions (mean evolution); by

solving the reduced equations (20) once, with n = 10 and �t = 1=N =

10�2=n (optimal prediction); and by solving the reduced equations (20) once

with n = 10, �t = 10�2=n but without rescaling the couplings, kQ and kq,

by the factor C = 9:1818:::
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